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We use the functional integral technique of Edwards and Lenard to solve the
statistical mechanics of a one-dimensional Coulomb gas with boundary inter-
actions leading to surface charging. The theory examined is a one-dimensional
model for a soap film. Finite-size effects and the phenomenon of charge regula-
tion are studied. We also discuss the disjoining pressure for such a film. Even
in the absence of boundary potentials we find that the presence of a surface
affects the physics in finite systems. In general we find that in the presence of a
boundary potential the long-distance disjoining pressure is positive, but may
become negative at closer interplane separations. This is in accordance with the
attractive forces seen at close separations in colloidal and soap film experiments
and with three dimensional calculations beyond mean field. Finally, our exact
results are compared with the predictions of the corresponding Poisson-
Boltzmann theory which is often used in the context of colloidal and thin liquid
film systems.

1. INTRODUCTION

Up until 1961 the statistical mechanics of the classical one-dimensional
Coulomb gas was an unsolved problem. At more or less the same time the
problem was solved by Lenard(2) and independently by Prager.(3) A power-
ful alternative method of solution using functional integration was subse-
quently expounded by Lenard and Edwards.'n A good review of this work
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may be found in ref. 4. It should be mentioned here that the two dimen-
sional Coulomb gas may also be solved exactly at the temperature where
e2/kT=2; this exactly soluble case has been investigated in the electric
double layer geometry by Cornu and Jancovici.(7> The problem of elec-
trostatic interactions is one of profound importance in the theory of
colloidal stability and also in the understanding of thin liquid films. In
these problems one considers the behavior of an electrolytic fluid between
two surfaces which either model the surface of large colloidal particles or
the surfaces of the thin liquid film. The charging mechanism of the surfaces
is usually of a statistical mechanical origin. For example in soap films made
from sodium dodecyl sulphate (SDS), the soap anions have hydrocarbon
tails which are hydrophobic and hence have a preference to lie on the
surface of the film."2' In colloidal systems chemical reactions may occur
between the colloid particles and the surrounding electrolytic medium
again leading to surface charging. As the two planes are brought together
surface charge regulation occurs. The precise qualitative behavior is still
only understood within the context of mean field Poisson-Boltzmann type
theories/8'9> and at a more sophisticated level using the hyper-netted chain
approximation (HNC). Rather surprisingly the HNC theory predicts, in
the context of colloidal systems, that the electrostatic interactions between
the planes may become attractive for small separations;'5'6) this is supported
by calculations of the fluctuations about the mean field solutions.'14) In the
mean field model applied to soap films charge regulation is predicted,"2'
but no attractive component is seen to appear within the electrostatic inter-
actions. Interestingly the point at which charge regulation becomes impor-
tant in the mean field model for SDS soap films coincides with the range
at which collapse to a Newton Black Film (NBF) occurs.'12' There is much
indirect evidence that the transition from a common film to a NBF is of
first order, for example it is believed to be exothermic and occurs via a
nucleation process where regions of black film expand over the surface of
the film. In this paper we propose to analyze the exactly soluble one-
dimensional version of the model proposed in ref. 12. We shall use the
method of ref. 1 to solve the problem but we shall highlight the finite-size
effects appearing in the problem to gain an understanding of how charge
regulation occurs in the model. We shall compare our exact results with
those of mean field theory to ascertain, at least in one dimension, the
accuracy of the traditional Poisson-Boltzmann mean field approach.

The paper is arranged as follows. We formulate a form of the soap film
model used in ref. 12 in one dimension. The problem is solved using the
functional integral formalism of ref. 1 and the limit of bulk systems is
rederived for the sake of completeness. We then analyze the problem in the
case of finite films with surface binding interactions and discuss the nature of
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the charge regulation and the stability criterion for the one-dimensional film.
We then compare the mean field Poisson-Boltzmann theory with the exact
results. Finally we conclude with a brief comparison between the qualitative
behavior observed in the one-dimensional system and that of experiments.

2. THE MODEL AND ITS PATH INTEGRAL SOLUTION

Here we shall summarize the approach of ref. 1 and apply it to the
system in which we are interested. The physical picture to bear in mind is
that of a line of charged particles in [0, L] (the film) which is connected
to an infinite bulk reservoir. In the model of ref. 1, the bulk is to the left
of the system and interacts with the system electrostatically; in addition the
entire system, bulk plus film, is taken to be electroneutral. In our model
one may imagine that the two one-dimensional systems are embedded in a
higher dimensional (say 2D) space and there is a free flow between the two
systems, however the electrostatic interaction between the bulk and the film
is taken to be such that the film and bulk are individually electroneutral.
This condition of electroneutrality for the film is one that is assumed in
many contexts and is important for determining the boundary conditions for
the nonlinear Poisson-Boltzmann equations in mean field approaches.(8'9)

If one considers a system of charged particles / with coordinates x, on the
real line and of charge zte, the electrostatic energy of a given configuration
is given by the Hamiltonian
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with £,• z, = 0, the electroneutrality condition we impose. The condition of
electroneutrality can be justified by considering that the bulk and the film
are embedded in a two dimensional space and interact via a one-dimen-
sional electrostatic potential along the y-axis at a distance y, this adds an
additional term (e2/4) y(Z/ z/)2 to 3fE and in the limit of large y imposes
electroneutrality. Using the relation

and the condition of electroneutrality we obtain

Hence the electrostatic component of the Boltzmann weight of a par-
ticular configuration with the electroneutrality constraint may be written as
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where we have used the Fourier representation of the electroneutrality
constraint, i.e.

Consider now a standard Brownian motion \j/(x) with time indexed on
[0, L] such that i/r(0) = ^0- We have therefore that

and

where E indicates the expectation over the standard Wiener measure. This
means that Eq. (2.4) may be written as an expectation over the paths of the
process >]/(x) as

The field theory to model a soap line is now derived from a model
consisting of a monovalent soap molecules whose anions are attracted to
the surface of the soap film by the presence of an effective potential V(x)
which acts on them and whose support is localized at the two adjacent
surfaces of the film. In addition one may add an additional monovalent
electrolytic species. In the grand canonical ensemble if the fugacities for the
soap anions/cations and the electrolyte anions/cations are given by /us and
jue respectively, then the partition function is given by ref. 1



i.e., the effective surface potential is highly localized about the boundary
points 0 and L. The A* appearing in (2.10) is similar to the adhesivity
introduced by Davies(10) in his analysis of the surface tensions of hydro-
carbon solution, although the idea of such a surface active term goes back
to Boltzmann. For physically realizable soap films V(x) is not strictly
localized as the effective potential created due to the hydrophobic nature of
the soap anion hydrocarbon tails has a support over a region of the length
the tail between the surface and the interior of the film (see ref. 12 for a
discussion of the mechanism generating this potential). However for the
purposes of demonstrating the essential physics of charge regulation in a
one-dimensional system our choice of V(x) should be adequate. With this
choice of V we obtain

with n=ns + ne and A=/^A*. Because now the potential V acts only on
the end points we may write Z in path integral notation as,
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where N is a normalization factor to be determined and the integrals in the
path integral are implicitly between 0 and L. The above may be derived by
using the link with the Brownian motion i/> above and then rewriting the
problem in path integral notation (i.e., by making explicit the Wiener
measure). A more general (in the sense that it applies in any dimension)
derivation of the representation above, comes from the introduction of the
field (ft as a Hubbard Stratonovich field. In general dimension the field
theory is a form of the Sine-Gordon field theory and is not generally
soluble. For simplicity we shall choose the form of V(x) to be such that



The path integral is that for a diffusing particle in a cosine potential, conse-
quently following ref. 1 we find

where P(\l/0,\jj \ x) obeys

subject to the initial condition P(^0, i^ | 0) = d(\l/0 — \j/). Note here that, for
the reasons given earlier, the boundary terms i/>0 and \jtL in our path
integral are free and are integrated over, this is in contrast to the study of
ref. 1, where \I/0 = Q and only tyL is left free. Note that the previous discus-
sion of the Brownian process >j/(x) is rather important for precisely deter-
mining the boundary conditions in the path integral. In order to determine
the normalization factor N we note that when e = A = 0 then we should
obtain the ideal gas result Z = exp(2/uL). In this case

giving simply
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At this point we must regularize the partition function by bounding
the possible values of i^0 between two extrema yielding

In the case where e ̂  0 we may use the fact that the action is invariant
under translations of 2nlefi112 to obtain (we have simply assumed that the
extremal values of i/'o are integer multiples of 2n/ep^}



Note that this discussion would have been redundant if we had kept
in mind the Brownian formalism above, this would have given us the
integration limits on \JJQ and the value of TV directly (and more rigorously!).

A further simplification is obtained by noting that

with

For simplicity in notation we shall take /? = 1 from here on. To recover
the temperature dependence the rescalings as e2 -> (Se2 and P —> kTP should
be performed. The final expression for Z is
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where K(\l/0 \ L) obeys

subject to the initial condition K(\l/0 | 0) =f(\l/0). In our problem

which in operator notation may be expressed as

The pressure of the film is simply given by P(L) = d log(Z)/3L. The
bulk pressure is given by Pbulk = limL_ m P(L) and the disjoining pressure
of the film is given by the difference between the film and bulk pressures,
i.e.



the extension to n-point functions being trivial.

3. RESULTS FOR LARGE FILMS: THERMODYNAMIC LIMIT

The eigenfunctions of H* periodic on [0,2ft] are the periodic
Mathieu functions Xn($> fl) whose eigenvalues we denote by yn(a) and
where it is easy to see that the largest eigenvalue y0(a)<a. Hence in the
case where e2L/2 » 1
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Finally defining the field </> = e\j/ we obtain

where now/(^0) =exp(/l exp( —i(f>0)} and

where

with a = 4^i/e2. Physical quantities may be related to observables of the
field theory in the standard way by including source terms in the partition
function and then taking functional derivatives of log(Z) with respect to
these source terms. One-point observables are calculated as

therefore Pbulk = (e2/2) y0(a) and any boundary terms become insignificant
in the thermodynamic limit.

3.1. Small a. Large e—Strong Coupling Limit

In the case where a is small one may evaluate y0(a) in perturbation
theory and we find that(17)



This result was explained by Lenard as an effect of dimerization. The leading
term is independent of e and is the perfect gas result for a density of p/2.
This is explained by the positive and negative charges binding in pairs to
give, in leading order, a neutral gas with half the original particle density.
The non-leading terms correspond to multipole interactions such as van
der Waals forces etc.

3.2. Large a. Small e—Weak Coupling Limit

The calculation of y0(a) for large a can be formulated as a perturbation
series for H* in Eq. (2.28) obtained by expanding the cosine and writing
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In this regime the average density is extensive and is given by

The condition that a is small is therefore equivalent to

This implies that the electrostatic energy is much greater than the contribu-
tion from the entropy. From Eqs. (2.25), (3.2), and (3.3) the pressure is
then given by the series

where Hosc is the harmonic oscillator Hamiltonian

Thus the perturbation theory is for the anharmonic terms in Eq. (3.6) using
the basis of oscillator states associated with Hosc. The first term in the
pressure is due to the O(a) term in Eq. (3.6) and gives the free gas con-
tribution. The next correction arises from the ground state eigenvalue of
the oscillator and is O(^fa). This is the well-known Debye-Huckel term.
We expect a power series in a~l/z, but to carry out the perturbative expan-
sion becomes increasingly difficult as the order increases. Instead, we can



The last term arises because the normalization factor N depends on e.
This term cancels trivially with a simple £ divergence in the l-loop graph
for {(t/O2). We can now take the limit £->0. The density, defined by
Eq. (3.3), is given by
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formulate the problem as an expansion in Feynman diagrams. A similar
approach to the calculation of the electrostatic free energy of a system of
fixed charge macroions has been used by Coalson and Duncan*18) and
Ben-Tai and Coalson.'19) In the bulk limit we write the Feynman kernel for
i//* as

where N is the normalization factor chosen so that ,X~(L, a — 0) = 1 (note
here we have taken f(ij/) = \ as the boundary term does not influence the
bulk physics). In the limit L -» oo

It is convenient to discretize L so that L = ne, where e is the lattice spacing.
Then the operation dfdL can be performed directly on the LHS of Eq. (3.8)
as

and thus the second term in Eq. (3.10) corresponds to the free gas term.
Hence, we have

We define the Debye mass m by m2 = a/2 and then
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Fig. 1. The one-dimensional Feynman graphs up to three-loop order which contribute to
the calculation of the bulk pressure in Eq. (3.12). The operator insertion ® for (i//)2 is shown
and corresponds to the insertion of the factor p- in the appropriate loop integral.

A standard Feynman graph expansion of closed loops for < ( i A ' ) 2 > can
be obtained and hence the pressure can be calculated from Eq. (3.12).
Standard dimensional analysis shows that the series obtained is in inverse
powers of m and that a diagram with / loops behaves as m2 ~'. To three-
loop order we evaluate the diagrams shown in Fig. 1 and find
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where overall irrelevant constant factors have been omitted, and

In order to express Phulk as a function of the density, /?, we use Eq. (3.11)
and calculate p in the loop expansion. As before, the diagrams with / loops
behave as m2"'. If P is calculated to /-loop order, then p is needed to
(/ — l)-loop order. To two-loop order we find



which has solution

where we have used the boundary condition that p/m -> e as m -> oc.

Fig. 2. The bulk pressure P,,,,,k, scaled by c2/2 versus a = 4fi/e2. The solid line is the exact
computed curve and the dashed and long-dashed curves are the predictions of
Eqs. (3.2) and (3.15), respectively. The predictions fit very well except in the region
0 . 7 < a < l . l .
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Note that, alternatively,

and if we define / = log(w) and write Phlllk = p + Pt, then we have



This agrees with Lenard12' and it is relatively easy to evaluate the loop
expansion to higher orders to improve on Lenard's result. The second term
is the familiar Debye-Hiickel contribution and it should also be noted that
the two-loop contribution is zero.

3.3. The Bulk Pressure

In Fig. 2 we show the numerically (see later) computed value for Pbulk

compared with the predictions of the previous two sections. For con-
venience Pbulk has been scaled by a factor of e2/2. As can be seen the curves
from Eqs. (3.2) and (3.15) fit very well except in the region 0.7 <#<!.!
where even so the discrepancy is not very large.

4. THIN FILMS: FINITE-SIZE EFFECTS AND SURFACE
CHARGE REGULATION

When the intersurface distance of the film becomes small in the sense
that \e2L is no longer large, then we may not apply the thermodynamic
result (3.1).

However if \ae2L and \e2L are both small, which is certainly the case
for extremely small L, then one may expand the operator exp(L//) in
powers of LH. To second order in LH one obtains
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Then P(m) can be re-expressed as a series in ^/p/e2:

thus yielding log(Z) *2^LA and Pd = 2^X — Pblllk. Hence one has the limit-
ing value of the disjoining pressure is negative if the value of A is sufficiently
small. However, one has the bound that y0(a) < a and hence Pbulk < 2/u thus

Hence the film certainly has a positive disjoining pressure at small differen-
ces if A> 1. The stability of the film at small separations is determined by



Hence over short distances the surface charge decays linearly as the two
surfaces are brought together.

5. INTERMEDIATE REGIME

In the regime between very thick and very thin films we shall resort to
a numerical analysis of the problem. There are two methods of interest
which we detail in the following sections. The figures in this section are
shown in units where L is scaled by e2/2. That is, a factor of e2/2 is absorbed
into all length variables.

5.1. The Mathieu Function Method

The disjoining pressure and other properties of the film can be
calculated using the even and odd Mathieu functions that are the eigen-
functions of H* defined in Eq. (2.28). The kernel ,^(L, a) defined in
Eq. (3.8) can be computed as an expansion on the Mathieu function by
resolution of the identity on the basis of these states. In this way the dis-
joining pressure may in general be written as
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If this term is positive then the film collapses to the point thickness L = 0.
For this to happen one must have

and

The value of the surface charge a is given by

where



Hence for a non-zero X the long distance disjoining pressure is always
positive since c\ < 0. It is clear however that the disjoining pressure may
become negative at smaller values of L.

The anion and cation number densities as a function of x, the distance
through the film, may also be calculated by taking functional derivatives
with respect to the fugacities. Denoting these densities respectively by p +

and p_ we find

5.2. Fourier Method

It turns out that there is a more direct method to calculate the dis-
joining pressure which exploits the periodicity inherent in the system. This
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If the eigenvalues of H are arranged in descending order i.e., y0 > y\ > y2 • • •,
the corresponding eigenfunctions are even about n for n even and odd
about n for n odd. Hence cn is purely real for n even and purely imaginary
for n odd. If A = 0 then cn = 0 for n odd and hence Pd is always negative,
hence the force between the two interfaces is always attractive. One sees
from the above expression that it is the even wave functions which are
attractive and the odd wave functions which are repulsive (as the denomi-
nator on the RHS of (5.1) is Z and hence positive). At long distances

where

We are able to construct both the even and the odd Mathieu functions
and their eigenvalues for any value of a using Given's method for
diagonalizing a tri-diagonal matrix. The eigenfunctions of H* are found on
a discretization of the interval [0, 2n~] and the appropriate matrix elements
in Eqs. (5.1), (5.4) can be calculated numerically.



method is especially effective for low temperature (small e). It does, how-
ever, become much more complicated when other observables such as the
density profiles are being calculated. Expanding K in terms of its Fourier
modes, i.e. writing
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one has that

and the bn evolve via the equation

Finally the partition function is given by

In this regime we shall also be interested in the mean value of the
surface charge a.

In terms of the Fourier expansion this becomes

The disjoining pressure may be computed similarly.
In what follows we shall consider three cases which are paradigms for

the different regimes of high, intermediate and low temperature. Since we
have set kT=\, high T corresponds to a small charge parameter, e and



vice-versa. Apart from an overall dimension-carrying factor the results
depend on e and [i through the combination a = 4/jkT/e2, and in what
follows we choose /j. — 1 and hence in our units a = 4/e2. The three regimes
of temperature are characterized by the three values of charge: e = 0.1, 1,4.

5.3. e=0.1, a = 400

From Eq. (3.15) the bulk pressure is P= 1.926. The major correction
to the free particle pressure, Pfm, = 2, is the Debye-Hiickei term and the
two and three-loop contributions are a correction of only AP = 0.003. In
Figs. 3 and 4 we show the pressure P versus film thickness L for various
values of A in the range 0.9 to 1.2. Also plotted is the prediction for the
bulk pressure to which all curves should be asymptotic. As can be seen
there is a collapse in all cases shown for A. The details of the collapse differ,
however, as A increases. For the lower values of A the collapse is to a film
of zero thickness which would, of course, be dominated by the detailed
structure of the surface physics which we have subsumed in to a layer of
zero thickness. Two maxima are clearly visible for A = 0.93, 0.95. The one
at larger L is the location of the ordinary collapse point. The maximum at

Fig. 3. The pressure P versus film thickness L for kT= 1.0, e = 0.\ and ^ = 1.0. for
0<Z.< 10.0. The different curves are for x = 0.9, 0.93, 0.95, 0.97, 1.02, 1.2 which respectively
correspond to the curves from lowest to highest pressure at any given L. The phenomenon of
primary and, in some cases, secondary collapse are clearly visible.
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Fig. 4. The curves shown in Fig. 3 extending to larger L to highlight the region of primary
collapse. As in Fig. 3 the higher the value of /. the higher the pressure at given L.

smaller L and the consequent multiple-valuedness of the curve in L versus
P in this region implies a hysteresis phenomenon as P is cycled for very
thin films. This kind of effect is reminiscent of a first-order transition which
predicts that for a 3D film there will be domains of different thicknesses
which will grow or contract like 2D bubbles. Of course, it remains to be
seen whether intuition from ID survives for the realistic 3D case.

For the curves with larger values of k plotted, the collapse is to a thin-
ner film but not to one of zero thickness. As A increases the maximum
at small L eventually disappears and for much larger X the collapse
phenomenon itself disappears.

In Fig. 5 we shown the surface charge a defined in Eq. (5.10) as a func-
tion of L. There is no feature which hints at the presence of the collapse
phenomenon appearing in the associated pressure curves, but in all cases
a decreases with L (charge regulation). For small L the behavior agrees
well with the prediction of Eq. (4.6).

The anion and cation densities have been computed as a function of
x for various values of L using Eq. (5.4). For e = 0.l the variation with x
is mild and shows no features of note. We show the midplane values for
each species as a function of L and for various values of A in Fig. 6.
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Fig. 5. The surface charge a defined by Eq. (4.6) versus film thickness L for kT= 1.0, e = 0.1
and/< = 1.0. The different curves are for /. = 0.9, 0.93,0.95,0.97, 1.02, 1.2 corresponding to the
curves from lowest to highest a. There is no feature which hints at the presence of the collapse
phenomenon appearing in the pressure curves shown in Figs. 3 and 4.

Fig. 6. The midplane anion (upper curves) and cation (lower curves) densities as a function
of film thickness L, for e = 0.1,/< = l, A = 0.9 (solid) and 1.2 (dashed).

822/90/3-4-26
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It is interesting to note that both methods described in Sections 5.1
and 5.2 were used to calculate the disjoining pressure. However, while 10
Fourier modes were amply sufficient, the number of Mathieu modes needed
was 40. In particular this large number of modes was found necessary to
reproduce the secondary collapse maxima shown in Fig. 3.

5.4. e= 1.0, a=4

As in the previous section the pressure P versus L is plotted in Fig. 7
for values of 1 in 0.3 < 1 ̂  0.8 which span a region of collapse. In this case
there is just one point of collapse to a film of zero thickness (in our
approximation) and which disappears for K between 0.7 and 0.8. From Eq.
(3.15) the bulk pressure is predicted to be Phuik — 1-3262. From the exact
calculation we find Phuik — 1.32584 which is in good agreement with the
prediction. To guide the eye the computed asymptotic value is shown in
Fig. 7. These pressure curves are well reproduced by the Mathieu function
method with as few as 8 modes. Unlike the case in the previous section
a — 4 is sufficiently small that the physics is dominated by the lowest-lying

Fig. 7. The pressure P versus film thickness L for kT= 1.0, c>= 1.0 and ft = 1.0. The different
curves are for A = 0.3, 0.4, 0.5, 0.6, 0.7. 0.8 which respectively correspond to the curves from
lowest to highest pressure at any given L. The collapse phenomenon occurs for the smaller /,
values and disappears between A = 0.7 and A = 0.8.
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Fig. 8. The surface charge a defined by Eq. (4.6) versus film thickness L for kT= l.O, e = 0.l
and ft = 1.0. The different curves are for / = 0.9, 0.93, 0.95, 0.97, 1.02, 1.2 corresponding to the
curves from lowest to highest a. There is no feature which hints at the presence of the collapse
phenomenon appearing in the pressure curves shown in Figs. 3 and 4.

Fig. 9. The anion (solid curves) and cation (dashed curves) densities as a function of
distance .v through the film for e = l.O, fi= i. / = 0.95 and for various film thickness L.
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Mathieu eigenfunctions. This is mainly due to the fact that A is smaller and
so the overlap </„ | /> falls off more sharply with n. This in turn means
that the pressure peak occurs for larger L than in the a = 400 case.
However, the large-a result for the bulk pressure, Eqs. (3.15), (3.20) still
holds very well in this region which means that the Debye-Hiickel
approximation is good.

The surface charge a is plotted in Fig. 8 and, as in the previous case,
there are no features associated with the pressure maxima of Fig. 7.

The anion and cation number densities as a function of distance, x,
through the film are shown in Fig. 9 for i = 0.5. These quantities were
calculated using Eq. (5.4). The anion (cation) curves are the higher (lower)
set in this figure. There are no unusual features and the curves for the other
values of 1 in 0.3 -> 0.8 are of similar form.

5.5. e=4.0, a = 0.25

The pressure P is plotted versus L for /I =0.12, 0.121, 0.122, 0.123 in
Fig. 10. The collapse region is again evident but it should be noted that it
occurs only for a very narrow range of A values. Of course, /I is a parameter

Fig. 10. The pressure P versus film thickness L for kT- 1.0, <? = 4.0 and fi = l.O. The dif-
ferent curves are for ,1 = 0.12,0.121, 0.122, 0.123 which respectively correspond to the curves
from lowest to highest pressure at any given L. The collapse phenomenon occurs for the
smaller /I values and disappears between /I = 0.122 and X = 0.123.
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that is determined by other variables and is not fixed externally. The bulk
pressure is no longer given by the large-a expression (Eqs. (3.15) and
(3.20)) but is well fitted by the small-a result (Eqs. (3.2) and (3.5)). The
prediction is Phulk = 0.243529 and the computed value is PhM = 0.243531.
This value is shown for reference in Fig. 10.

The curves for the surface charge, a, are similar to those of previous
sections and are not reproduced here. The small L behavior is again consis-
tent with Eq. (4.6).

The anion and cation number densities (Eq. (5.4)) are plotted for
1 = 0.123 and L = 0.1, 0.51.1 in Fig. 11. It is interesting to note that for
both species the density falls sharply at the film surface and the anion
density reaches a peak for the thicker films which is located only a short
distance into the film. The position and shape of this peak is independent
of thickness L and seems to be a universal feature of the low temperature
case. Only the lowest 4 Mathieu modes make an appreciable contribution
since the effective charge is large and from Eq. (5.4) this causes a strong
exponential suppression on all but the lowest modes (note that in Eq. (5.4)
a factor of e2/2 is absorbed into all lengths). Also, the values of 1 in the
collapse region decrease as e increases and so the surface function f((/>)
(Eq. (2.22)) oscillates less fast and only has appreciable overlap with the
lowest modes. For these reasons the species number densities are dominated

Fig. 11. The anion (solid curves) and cation (dashed curves) densities as a function of
distance ,\ through the film for e = 4.0, /( = 1, A = 0.123 and for film thicknesses L = 0.1,0.51.1.
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by the contributions from the lowest modes and so show more structure at
low temperature than at high temperature. This is to be expected since the
electrostatic energy dominates the thermal energy. We have observed
similar maxima in the density profiles for other values of e if A is sufficiently
small. This is due again to the dominance of only a very few low-lying
Mathieu modes.

6. COMPARISON WITH POISSON-BOLTZMANN THEORY

The Poisson-Boltzmann (PB) theory for our system may either be
derived directly by standard thermodynamic techniques,(8%9) or as the mean
field theory for the field theory (2.9). The theory has been used in a wide
context in soft condensed matter physics and in particular to analyze the
behavior of soap films in refs. 11-13, and also in the context of colloidal
stability.'8'9) In general it is fair to say that it has been reasonably success-
ful in predicting the physics of systems where interplane distances are
reasonably large and for monovalent ionic species.(15)

The resulting equations are (again scaling so that /?= 1)

Interestingly (j> appears as a purely imaginary saddle point of the theory
(2.9). In the region [0 + , L~~\ the above equation reduces to
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where here <j> is the mean field electrostatic potential. Assuming symmetry
about the point L/2 (however see the comments in the conclusion) and
using the condition of electroneutrality, the boundary conditions are

with the boundary conditions
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where (j>m = tj>(L/2) is the midplane potential. One immediately sees that in
the case /I = 0 then <j> = 0 is a solution and the film is always marginally
stable in the sense that Pd = Q. In general any non-zero /I gives a non-zero
value of (j>m and hence the film is always stable for non-zero L This is
clearly at variance with the exact results derived here. Moreover, the mean
field bulk pressure is Pbulk = 2^ which is only applicable to the limit e-*Q
or, equivalently, a—> oo.

In general one must resort to a numerical solution of the above mean
field equations. However in the case where L is small such that (f> varies
only slightly we may use the approximation,
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and

where a is the surface charge. It easy to show that the mean field free
energy over the bulk is<8)

In addition, we find

Substituting this into Eq. (6.3) yields C = //esinh(^m). Using this in the
boundary condition (6.5) then yields

Solving this yields

Hence in this limit
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One sees that while the surface charge a does decay to zero it does so as
Ll/2 in comparison with the exact result (4.6). In addition the disjoining
pressure (6.11) actually diverges rather than tending to a constant.

For infinitely thick films one may use the condition that <j>m -* 0 in
order to calculate the surface potential (we simply use the first integral of
Eq. (6.3)). In this case the surface potential is given by the equation

giving a surface charge

At intermediate distances one has to numerically solve the PB equa-
tions. For the cases discussed in Section 5 there is no agreement at all
between the numerical solution to the PB equation and the exact result.
This is to be expected since there is no collapse predicted by the PB equa-
tion. However, there is no agreement even on the rising part of the pressure
curve at L much greater than that at the pressure maximum. Also, the
values of Pbu/k are not close to the mean-field prediction of Pf^k = 2,Q
although for <? = 0.1 this value is approached. Nevertheless, in this latter
case there is still a large disagreement between the exact and mean-field
curves. Indeed, we have investigated very small values of e for a large range
of A values but have not found any reliable agreement between the exact
theory and the PB equation. The PB equation may be applicable for even
smaller values of e than we have investigated, indeed a naive analysis of the
applicability of the saddle point method for the theory (2.9) seems to
suggest that one requires a to be finite but with either ^ » 1 or e2« 1,
thus giving either /u or l/e2 as the large parameter justifying the saddle
point method. In the cases we have analyzed, mean-field theory and the PB
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and

from this we find that the physical solution is



equation are of very little value in the analysis of the one-dimensional
Coulomb gas.

7. CONCLUSIONS

In conclusion we have derived an exact solution for the one-dimen-
sional Coulomb gas with boundary effects. Surprisingly the mere presence
of a boundary but without any adhesion term leads to a negative disjoining
pressure and the resulting film will tend to collapse. When A > 0 we have
shown that at sufficiently large distances the disjoining pressure must be
positive, and hence a stable common film regime exists. However, if the
value of A is not too large a collapse phenomena may occur where the dis-
joining pressure decreases as the surfaces come together. The disjoining
pressure may even become negative signaling the onset of strong attractive
forces in the system; this may well be the one-dimensional version of the
collapse to a NBF seen in experimental systems. We have also seen the
possibility of secondary collapses in the parameter ranges we have studied;
it would be interesting if one could find an experimental system exhibiting
a secondary collapse. In principle multiple collapses are possible, but we
are yet to see more than two.

Poisson-Boltzmann theory predicts a stable film for any non-zero
value of A and in addition the calculated mean field disjoining pressure is
larger that that of the exact calculation. Taking into account the full theory
and all its correlations does indeed introduce an attractive interaction
over and above the mean field result, in accordance with the calculations
made in three dimensional systems using techniques beyond mean field
theory/5'6>14) We would like to comment here that in our solution of the
mean field equations we have, as is done throughout the literature, always
assumed that the mean field solution is symmetric about the midplane of
the film. In physical terms this seems quite plausible for thick films where
the two planes do not interact and hence there can be no breaking of
spatial symmetry. The variant of mean field theory used in refs. 12 and 13
uses this symmetric solution and the theory describes extremely well both
surface tension data for SDS bulk solutions and the disjoining pressure
isotherms up to the point where the collapse occurs. One may show<16) that
in the field theoretic sense that the mean field solutions we have found here
and in refs. 12 and 13 are indeed stable local minima of the free energy and
hence they at least describe a metastable state. The fact that the mean field
solutions work so well in this context up to the collapse point suggest that
another mean field solution with a broken spatial symmetry and possibly
with a complex part may appear with a lower free energy than that of the
symmetric real solution. This would also be consistent with the experimental
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indications (and indeed conclusions that may be drawn from our exact
solutions in ID) that the transition to a Newton Black Film is of first
order. Work on this problem is currently under progress.(16) Also of interest
would be to test the validity of the linearized Poisson-Boltzmann equations
which have the virtue of obeying certain sum rules which are violated by
the full nonlinear equations.<20)
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